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BACKGROUND: The molecular basis of human testicular dysfunction is largely unknown. Global gene expression
profiling of testicular biopsies might reveal an expression signature of spermatogenic failure in azoospermic men.
METHODS: Sixty-nine individual testicular biopsy samples were analysed on two microarray platforms; selected
genes were validated by quantitative real-time PCR and immunohistochemistry. RESULTS: A minimum of 188 tran-
scripts were significantly increased on both platforms. Their levels increased with the severity of spermatogenic
damage and reached maximum levels in samples with Sertoli-cell-only appearance, pointing to genes expressed in
somatic testicular cells. Over-represented functional annotation terms were steroid metabolism, innate defence
and immune response, focal adhesion, antigen processing and presentation and mitogen-activated protein kinase
K signalling pathway. For a considerable proportion of genes included in the expression signature, individual tran-
script levels were in keeping with the individual mast cell numbers of the biopsies. When tested on three disparate
microarray data sets, the gene expression signature was able to clearly distinguish normal from defective spermato-
genesis. More than 90% of biopsy samples clustered correctly into the corresponding category, emphasizing the
robustness of our data. CONCLUSIONS: A gene expression signature of human spermatogenic failure was revealed
which comprised well-studied examples of inflammation-related genes also increased in other pathologies, including
autoimmune diseases.
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Introduction

Male infertility is a major health problem affecting 15% of

couples during their reproductive lifespan worldwide. Thera-

pies are ineffective in a majority of the cases, and a growing

number of patients undergo testicular biopsy for testicular

sperm extraction (TESE) and ICSI into an oocyte. To date, his-

tological examination of the biopsies is the only way to obtain

diagnostic and prognostic information to devise appropriate

medical treatment (for review, see Schulze et al., 1999;

McLachlan et al., 2007). Sequencing of the human genome

has profoundly affected the way in which pathologies are

studied, spawning the development of high-throughput tech-

nologies such as gene expression profiling using high-density

DNA microarrays. This method is now widely employed in

the diagnosis of cancer and other potentially fatal human dis-

eases (Alizadeh et al., 2000; Bittner et al., 2000; Perou et al.,

2000). Gene expression profiling is also likely to improve the

diagnosis of male infertility and to promote individualized

therapy design (He et al., 2006).

To date, few studies have used global expression profiling to

assess the molecular phenotypes of the normal and pathological

human testis (Fox et al., 2003; Rockett et al., 2004; Yang et al.,

2004; Ellis et al., 2007). However, in some of these publi-

cations the use of divergent grading systems, small biopsy

numbers and pooling of samples make it difficult to interpret

the results. Also, considering the heterogeneity of human testi-

cular pathologies, the analysis of additional individual patho-

logical and morphological subtypes is essential. We recently

employed microarray analysis to reveal distinct subtypes of

spermatogenic failure in humans (Feig et al., 2007). In this

approach, the selection of defined and histologically uniform

subtypes, combined with the analysis of individual biopsy

samples, was a crucial step. The pathological subtypes imply

that the seminiferous tubules lack germ cells, and hence the

corresponding cell type- and stage-specific transcripts, in a

varying degree. We exploited this observation to reveal†A.N.S. and C.F. contributed equally.
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subtype-specific expression profiles which could be correlated

with specific stages of human male germ cell development

(Feig et al., 2007). The vast majority of the differentially

expressed transcripts were indeed testis- or even germ cell-

specific, reflecting reduced numbers of the corresponding

germ cells which normally express these mRNAs.

To reveal transcriptional changes occurring in testicular

non-germ cells, we here focused on transcripts which increased

during defective or absent spermatogenesis. These transcripts

are likely to reflect changes in the somatic cells, and might

reveal target genes for interventional therapy (for review, see

He et al., 2006). During routine diagnostic work-up of

human testicular biopsies, the somatic cell types are often not

further analysed because the focus is on germ cells.

However, perturbed functions of Sertoli cells, peritubular

myoid cells, interstitial Leydig cells and immune cells are

known to accompany and may even cause spermatogenic

failure. Infiltration of mast cells (Jezek et al., 1999; Yamanaka

et al., 2000), interstitial fibrosis (Frungieri et al., 2002) as

well as an altered distribution and/or dysfunction of Leydig

cells (Tash et al., 2002; Holm et al., 2003; de Kretser, 2004;

Andersson et al., 2004) are frequently associated with testicular

pathology (for review, see McLachlan et al., 2007).

To be able to correlate the highly individual gene expression

patterns of human testicular biopsies with distinct pathological

subtypes, we analysed samples belonging to four frequently

observed and uniform subtypes, termed ‘normal spermato-

genesis’, ‘uniform hypospermatogenesis’, ‘maturation arrest

of germ cells at meiosis’ and ‘Sertoli-cell-only appearance’.

Using two different oligonucleotide microarray platforms

(Codelink and GeneChip arrays), we filtered 188 genes which

showed significantly increased expression in the pathological

subtypes, whereby the individual transcript levels increased

with the severity of the pathology and also with the individual

mast cell numbers of the biopsies. The validity of the gene

expression signature was further confirmed by an integrated

analysis of three independent microarray data sets. The mol-

ecular changes revealed hallmarks of a graded inflammatory-

like response and might point to novel therapeutic targets.

Materials and Methods

Patients and testicular biopsies

Testicular biopsies were obtained from patients presenting at the

Department of Andrology, University Hospital Hamburg-Eppendorf,

Germany, between August 2004 and June 2006. Informed consent

and Ethic Committee Approval was obtained (OB/X/2000), and the

study conducted in accordance with the guidelines of the ‘Helsinki

Declaration’. Tissues were taken simultaneously for therapeutic

TESE and diagnostic purposes as described previously (Jezek et al.,

1998; Schulze et al., 1999; Feig et al., 2007). For the present study,

69 samples were selected from a collective of 700. Their histology

was extrapolated from examinations of parallel biopsies from the

same testis as part of the routine diagnostic work-up. As a final selec-

tion step, results from a test-TESE were taken into account to exclude

any discrepancies between the morphological classification of the first

biopsy and the spermatogenic activity in a second biopsy from another

area of the same testis (compare Feig et al., 2007). Most patients had

bilateral biopsies, and care was taken that the selected parallel samples

were always from the same side.

RNA preparation

Tissue samples of rice grain size were removed and immediately sub-

merged in RNAlaterw (Ambion, Austin, TX, USA). Total RNA was

extracted in RNApureTM (Peqlab, Erlangen, Germany) and re-purified

on RNeasyTM columns (Qiagen, Hilden, Germany) according to the

manufacturers’ protocols as described (Feig et al., 2007). Purity and

integrity (28S/18S ratio) were assessed by loading 200 ng aliquots

onto RNA 6000 nano assay chips using an Agilent Bioanalyzer

(Model 2100; Agilent Technologies, Palo Alto, CA, USA). Only

samples with an RNA integrity number higher than 7.5 (RIN,

Agilent software) were included in the analyses.

Complementary RNA target synthesis and hybridization of

Codelink bioarrays

2 mg of total RNA per reaction were employed in reverse transcription

as described (Feig et al., 2007). After second-strand synthesis, the

complementary DNA (cDNA) served as template for time-optimized

in vitro transcription using T7 RNA Polymerase to produce target

RNA with the CodeLinkTM expression assay reagent kit (GE Health-

care, Piscataway, NJ, USA). Concomitant labeling in the presence of

biotinylated nucleotides (Biotin-16-UTP, Roche, Switzerland),

column-purification, UV spectrophotometry quantification and

hybridization to CodelinkTM Human 20K Bioarrays (GE Healthcare)

was performed as described (Feig et al., 2007). Slides were dried

and scanned on a 428TM Array Scanner (Affymetrix, Santa Clara,

CA, USA) using Jaguar 2.0 Software. CodeLinkTM Expression Analy-

sis Software v4.1 (GE Healthcare) was used for image analysis.

Complementary RNA target synthesis and hybridization

of Affymetrix GeneChips

Amplification and biotin labeling of complementary RNA (cRNA)

was performed following the Eukaryotic Sample and Array Processing

Manual (Affymetrix; Schlecht et al., 2004). Briefly, 2 mg of total RNA

were used for reverse transcription using the One-Cycle cDNA

Synthesis Kit (Affymetrix). After second-strand synthesis, the

cDNA served as template for in vitro transcription using the IVT

Labeling Kit (Affymetrix) to produce cRNA in the presence of

biotin-conjugated nucleotide analogues (16 h, 378C). Following

amplification and purification, cRNA targets were incubated at 948C
for 35 min and the resulting fragments monitored on the BioAnalyzer

(Agilent). Hybridization cocktails containing fragmented cRNA at a

final concentration of 0.05 mg/ml were transferred into Human

Genome U133 Plus 2.0 Array GeneChips (Affymetrix) and incubated

for 16 h at 60 U/min at 458C on a rotator (Affymetrix Hybridization

Oven 640). Arrays were washed and stained by using a streptavi-

dine–phycoerythrin conjugate. To increase signal strength, the anti-

body amplification protocol was used (EukGE-WS2v4; Eukaryotic

Sample and Array Processing Manual). GeneChips were processed

with a HP GeneArray Scanner (Affymetrix) by using default settings.

DAT image files of the microarrays were generated using Microarray

Analysis Suite 5.0 (MAS; Affymetrix).

Data analysis and statistics

After elimination of genes below background levels (Codelink: esti-

mated from 300 negative bacterial control spots; GeneChip: the fifth

percentile of all expression values) and imputation of missing values

by a k-nearest neighbour (KNN) approach (Troyanskaya et al., 2001),

datasets were normalized by quantile normalization (R package ‘affy’).

This approach yielded 17 093, 17 949 and 23 822 genes for the Codelink
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training and test datasets and for the GeneChip dataset, respectively. In

compliance with the MIAME (Minimal Information to Annotate a

Microarray Experiment) guidelines (Brazma et al., 2001), raw and pro-

cessed data files of all specimens were deposited in the Gene Expression

Omnibus (‘Codelink training set’, GSE4797; ‘Codelink test set’,

GSE6023) and ArrayExpress (‘GeneChip set’, E-TABM-234) public

repositories. Defining four morphological subgroups, differential genes

were selected by analysis of variance (ANOVA) and the ‘Bonferroni’

value as the most conservative statistical cut-off (2.93E-6 for Codelink;

2.1E-6 for GeneChip) was employed. Pair-wise individual t-tests were

performed between the groups in order to elucidate different profiles

within the gene list. Hierarchical clustering (average distance, Manhattan

metric) was performed on the individual samples or on medians of the

subgroups using all genes. Cluster stability was evaluated using multi-

scale permutation clustering (R package ‘pvclust’; Suzuki and

Shimodaira, 2006). Scaled and centered data were subjected to Principle

Component Analysis (PCA, R package ‘ade4’). The transformed values

were additionally analysed using partitioning around medoids (PAM) as

implemented in R (package ‘cluster’). The significance of PAM results

after several rounds of analysis using increasing numbers of clusters

was verified by using silhouette plots which are to some extent a

measure of the degree of similarity of expression patterns in a given

cluster compared with all other patterns in the other clusters.

Creation and analysis of the combined data set

Systematic bias reduction was achieved as described by Benito et al.

(2004) by using the Java implementation of Distance weighted

discrimination (DWD) (https://genome.unc.edu/ pubsup/dwd/
DWD.zip). DWD processed datasets were merged and subjected to

hierarchical clustering as described above. Stringent classification of

all samples was conducted by Diagonal Linear Discriminant Analyis

(DLDA), KNN and Support Vector Machines (SVM) using

Leave-One-Out-Cross-validation with 2000 permutations of the

class labels for a more realistic estimate of the misclassification rate

(BRB ArrayTools v.3.4). All scripts used in this analysis can be down-

loaded from http://humrep.oxfordjournals online.

Quantitative RT–PCR analyses

cDNA synthesis followed standard procedures as described in

Feig et al. (2007). Primers were designed using free Primer 3 software

(http://frodo.wi.mit.edu/); sequences are available as Supplemental

information (Supplementary Data S8). Quantitative RT–PCR

(qRT–PCR) was performed using LightCyclerTM (Roche, Basel,

Switzerland) technology. The threshold cycle (crossing point) was

determined for each reaction by second derivate maximum method

(LightCyclerTM Quantification Software). Transcript levels were nor-

malized to ribosomal protein S27 RNA showing minimum variation

between individual samples. Fold differences were calculated by use

of the relative expression software tool (REST# software, Pfaffl

et al., 2002). PCR efficiency was in the range between 1.65 and

1.81 as calculated by an R script employing the window-of-linearity

method (Ramakers et al., 2003). Products were gel separated and

their identity verified by sequence analysis.

Immunohistochemistry

Tissue sections were prepared from Bouin-fixed, paraffin-embedded

fragments of testicular biopsies. Anti-calretinin antibody-Zymed,

polyclonal from rabbit (Invitrogen, Karlsruhe, Germany) was

employed to stain slides at a dilution of 1:100. Antigen localization

was achieved using a two-step immunoperoxidase staining method

(Envision plus polymer System, DAKO; Hamburg, Germany). Speci-

ficity of immunostaining was confirmed by both, omission of primary

antibody and staining of parallel sections with antibodies directed

against an irrelevant antigen. Stained sections were evaluated by

bright-field microscopy (Nikon, Düsseldorf, Germany) and images

captured with a Leica DC 300 digital camera (Leitz, Bensheim,

Germany).

Counting of mast cells

Testicular mast cell numbers were estimated from 28 diagnostic semi-

thin sections, which had been prepared for diagnostic work-up from

plastic-embedded parallel biopsies of the same testes included in the

Codelink 28-sample training set. Metachromatic granula-positive

cells were counted by two people in four independent fields-of-view

in an independent and blinded fashion as described in Jezek et al.

(1999). Differences between samples from different histological sub-

groups were calculated with a total of 12 different statistical tests for

distribution, location, variance and scale to obtain an overview of the

characteristics underlying individual mast cell counts (Supplementary

Data S7). In the case of a normal distribution, parametric tests were

applied (e.g. t-test). In any other case, non-parametric versions of

the tests were used (e.g. Wilcoxon rank-sum test).

Over-representation analysis

Over-represented GO (gene ontology) terms and pathways were

queried using the DAVID 2007 server (http://niaid.abcc.ncifcrf.

gov/). Genes were queried for the over-representation of transcription

factor binding sites (TFBS) by using the OPOSSUM web tool version

1.3 (http://www.cisreg.ca/cgi-bin/oPOSSUM/ opossum) with

default settings.

Results

Filtering of genes induced in testicular pathology

The 69 analysed biopsies belonged to four distinct histological

subtypes termed normal spermatogenesis, uniform hyposper-

matogenesis, maturation arrest of germ cells at meiosis

(‘germ cell arrest’) and Sertoli-cell-only appearance

(compare Feig et al., 2007). Only samples with uniform his-

tology and conformity of test-TESE results were included

(see Materials and Methods). Cases with obvious morphologi-

cal differences between individual seminiferous tubules in

different areas of the testis were excluded. The sample set

contained biopsies from vasectomized men which may exhibit

testicular changes (compare Raleigh et al., 2004). However,

histological inspection confirmed qualitatively and quantitat-

ively normal spermatogenesis in each of the selected cases,

and, importantly, a previous microarray analysis clustered

them together with other samples of normal spermatogenesis.

Three sample sets were grouped from the 69 biopsies and

individual gene expression patterns assessed in independent

laboratories on two microarray platforms. The Codelink train-

ing set comprised 28 samples (GSE4797). An equivalent,

but independent, GeneChip set comprised 27 samples

(E-TABM-234). An additional set of 14 samples was indepen-

dently analysed on the Codelink platform (GSE6023) and the

data included only later as a test set (see below). Comparable

analysis procedures were applied to both data sets (see

Materials and Methods). The overall distributions of ratios

from all transcripts were calculated between histological sub-

types to assess whether a reduction in germ cell numbers

might cause an overall proportional enrichment of somatic
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transcripts. This procedure provides more information about

changes in cellular distribution compared with a normalization

based on erroneously selected somatic genes that might be

potentially regulated. Comparing normal spermatogenesis

and hypospermatogenesis, a mean ratio near 1 was observed

with both platforms (1.05+ 0.35 and 1.08+ 0.40, respec-

tively), suggesting that overall changes in transcript pro-

portions were negligible between these subtypes. In

comparison, mean ratios of .1 were noticed between normal

spermatogenesis and germ cell arrest (1.12+ 0.48 and

1.24+ 0.70, respectively), and also between normal spermato-

genesis and Sertoli-cell-only appearance (1.35+ 0.91 and

1.58+ 1.50, respectively). This observation corroborated his-

tological data indicating such an effect.

To filter the differentially expressed genes, adjusted cut-off

values for fold induction were chosen that took into account

the effects of non-germ cell enrichment and differences

between dynamic range (sensitivities) of the array platforms

(Supplementary Fig. S1; compare MAQC consortium, 2006).

Using the stringent ‘Bonferroni’ threshold level for P-values

(ANOVA) and a fold induction .2 in any one of the three

pathological subtypes, 551 differential Codelink genes were fil-

tered which showed significantly increased transcript levels in

spermatogenic failure compared with normal spermatogenesis

(see Supplementary Data S1). In the GeneChip system,

2096 differential probe sets were filtered which showed a

minimum fold induction of 3 (see Supplementary Data S2).

The higher number of genes detected by GeneChips can in

part be explained by the fact that they covered more genes

than the Codelink arrays.

Characteristics of gene expression profiles

Mean transcript levels of differential genes were calculated for

each morphological subtype and plotted to illustrate their

expression profiles in correlation with these subtypes. The

line plots showed similar profiles on both platforms, reflecting

a graded induction in correlation with increased spermatogenic

damage (Fig. 1, panel A). A significant increase was observed

between normal spermatogenesis and hypospermatogenesis,

and again between germ cell arrest and Sertoli-cell-only

appearance. Maximum transcript levels were most often

correlated with Sertoli-cell-only appearance. In hypospermato-

genesis and germ cell arrest, fold inductions were often

considerably smaller. Quantitative differences between the

latter two pathologies, however, were not significant for most

loci (Fig. 1, panel B). As a consequence, we were unable to

identify any induced genes that discriminated hypospermato-

genesis from germ cell arrest with sufficiently high accuracy.

We also failed to detect any transcripts which showed

significant increase in hypospermatogenesis and/or germ cell

arrest, but not in Sertoli-cell-only appearance.

Based on the independent Codelink and GeneChip lists,

supervised hierarchical clustering was employed to group the

samples in four categories, as suggested from the histological

subtypes. Stable clusters of normal spermatogenesis and

Sertoli-cell-only appearance were revealed (Supplementary

Figs 2 and 3). As opposed to these, samples which showed

hypospermatogenesis and germ cell arrest were not clearly

separated, but clustered in near vicinity within the dendro-

grams, pointing to a higher intra-group variability and related-

ness in terms of their pathology-induced genes. The tendency

of samples to group into three categories instead of four is

also illustrated by PCA (Supplementary Figs 2C and 3C).

The PAM cluster algorithm was additionally applied to

group the differential GeneChip genes by their similarity of

expression profiles in order to possibly identify additional pro-

files of gene induction. A cluster of 278 Affymetrix probe sets

showed a robust increase in the pathological samples (Sup-

plementary Data S3). Again, the individual expression profiles

reflected a graded induction of the differential genes, their tran-

script levels increasing with increased germ cell loss and reach-

ing maximum levels in Sertoli-cell-only appearance. No other

PAM clusters of pathology-induced genes were revealed,

suggesting that in the histological subtypes studied here, any

genes showing divergent profiles of induction were extremely

rare, if at all present.

Confirmation of pathology-associated molecular
alterations

Linking annotations from both the Codelink and GeneChip lists

of differential genes was achieved by conversion into UniGene

cluster IDs (UCIDs, Unigene Build #190). An intersection of

188 common UCIDs was apparent (Fig. 2A; Supplementary

Data S4). As the differential gene lists had been independently

filtered, this overlap validated our results. Based on the PAM

algorithm, the number of intersecting genes was smaller, but

the overlap was still substantial. When genes from the central

most intersection of the Venn diagram were inspected more

closely (Fig. 2A), it turned out that they comprised well-known

examples of pathology-related genes (compare Table 1) which

had previously been shown to be induced in various human

pathologies. These genes were characterized by robust fold

inductions in all subtypes of defective spermatogenesis,

showing ~2-fold increase in expression levels even in

hypospermatogenesis (Table 1).

To further validate the array data, qRT–PCR was performed

employing cDNAs from all 28 samples of the Codelink training

set. Twenty genes were selected from the independent gene lists,

comprising known and as yet uncharacterized loci (partially

shown in Fig. 3; Supplementary Fig. S4; for oligonucleotide

primers, see Supplementary Data S8); in all cases except one

(GAK; NM_005255) their increase was confirmed by qRT–

PCR. In addition, the profiles obtained by microarray and

qRT–PCR expression analyses were in good agreement

(Fig. 3). A significant increase of the LH receptor (LHCGR)

transcripts was suggested by our data from GeneChips. The

gene was not covered by the Codelink array, and thus was not

included in the intersection. Still, using the cDNAs from the

Codelink samples, the increase was confirmed by qRT–PCR

(Fig. 3). Maximum transcript levels of the Leydig cell-specific

gene were observed in Sertoli-cell-only appearance; a fold

induction clearly above our threshold criteria, however, was

also suggested for hypospermatogenesis and germ cell arrest.

Since cell type-specific transcripts are increased as the rela-

tive proportion of that specific cell type increases, we looked

at genes well known to be specifically expressed in somatic
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testicular cells. Interestingly, many of these were not included

in the lists of differentially expressed genes. This group com-

prised Sertoli cell-specific reference genes such as the Wilms

tumour suppressor WT1 (NM_024426), testis-specific kinase

TESK2 (NM_007170; Toshima et al., 2001), Anti-Müllerian

hormone AMH (NM_000479) and the FSH receptor FSHR

(NM_000145; compare GSE4797 and E-TABM-234 with Sup-

plementary Data S1 and S2). FSHR transcript levels were con-

firmed by qRT–PCR (data not shown), suggesting that they

were unaffected by impaired or absent sperm production in

our patients. Transcript levels of the androgen receptor gene

(AR; NM_000044), which is expressed in various somatic cell

types of the adult testis, likewise appeared unaffected by the pre-

sence or absence of germ cells.

We sought to determine whether increased transcript levels

would cause an increase on the protein level. At the same time,

we aimed to confirm that the suggested alterations in gene

expression affected the somatic testicular cell types. Immunoper-

oxidase histochemistry (IHC), although not a quantitative

method, is currently the only practical way of detecting proteins

in small fixed tissue samples. We focused on robust differences

in expression levels which might be discerned by IHC and

chose calretinin (CALB2¼ calbindin 2) as an example (see

Table 1; Fig. 4A). Abnormal calretinin expression in azoospermic

men had previously been shown by IHC (Bar-Shira Maymon

et al., 2005). Employing anti-calretinin antibodies, we compared

histological sections of different histological subtypes. Immunos-

taining of the protein was seen in all subtypes, including normal

spermatogenesis, where it appeared to be restricted to the

Leydig cells (Fig. 4B), at the same time providing an internal

positive control. Sections of biopsies with Sertoli-cell-only

appearance revealed an increase in interstitial staining as well

as an additional staining within isolated seminiferous tubules

(Fig. 4C), most probably originating from Sertoli cells

(compare Bar-Shira Maymon et al., 2005).

Functional annotations of pathology-induced genes

Gene annotation enrichment analysis was applied to the lists of

differential genes to reveal functional categories over-

represented relative to chance (Fig. 2, panel B; Supplementary

Data S1–S4). Categories common to both independent Code-

link and GeneChip lists included lipid/steroid metabolism, posi-

tive regulation of nuclear factor (NF)-kB cascade, focal

adhesion and the mitogen-activated protein kinase (MAPK) sig-

nalling pathway (Fig. 2, panel B). Over-representation of

NF-kB TFBSs in the promoter regions of the induced genes

pointed to a potential pathological role of this pro-inflammatory

pathway. When only the 188 intersecting genes were considered

(compare Supplementary Data S4), over-representation of

innate defence and immune response, antigen processing and

presentation and NO signalling was observed (Fig. 2, panel

B). In the PAM gene list, complement activation, androgen

metabolism, innate and humoral immune response, complement

and coagulation cascades and xenobiotic metabolism were

additional over-represented functional categories.

Annotations and survey of the literature suggested that a

considerable proportion of robustly increased transcripts were

mast cell-derived. These included TPSAB1 and CPA3, encod-

ing mast cell-specific proteases secreted from the granules

upon activation (compare Table 1) and also FCER1G

Figure 1: (A) Line plots of genes significantly induced in human testicular pathology
Expression profiles of 551 probes (Codelink, upper panel) and 2096 probe sets (GeneChip, lower panel) showed high correlation between increas-
ing transcriptional activity and testicular pathology. Their common characteristic is a statistical significance in the transcriptional changes, which
is below the ‘Bonferroni’ cut-off. The grey lines depict transcriptional profiles, while the black box plots illustrate the median and interquartile
ranges from four different pathological subtypes. FTS, full testicular spermatogenesis; GCA, germ cell arrest; HYS, hypospermatogenesis; SCO,
Sertoli-cell only. (B) P-value distribution of all probes (histograms) for the transcriptional changes within FTS/HYS, HYS/GCA and GCA/SCO,
respectively, as calculated by t-test. Note the high statistical significance of transcriptional changes between FTS and HYS and also between GCA
and SCO

Spiess et al.

2940

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/22/11/2936/654937 by guest on 23 April 2024



(NM_004106), encoding the mast cell-specific immunoglobu-

lin (Ig)E-receptor. Additional gene products were contained

in the list of differential genes, which had previously been

reported to increase in correlation with abnormal activation

and/or accumulation of mast cells (and other immune cells).

We therefore asked whether certain transcript levels were in

keeping with the mast cell numbers in the testicular biopsies.

Mast cells are readily detectable as metachromatic granula-

positive cells on histological sections (Jezek et al., 1999).

They were counted using slides from parallel biopsies to the

Codelink samples. Applying parametric or non-parametric stat-

istics, depending on the normal distribution of the cell counts, a

significant increase in mast cell number was seen between

normal spermatogenesis and Sertoli-cell-only appearance

(P , 0.001), and further between normal spermatogenesis

and hypospermatogenesis (P , 0.01; Supplementary Data

S7; Supplementary Fig. S5).

To reveal correlations between individual transcript levels

and individual numbers of metachromatic granula-positive

cells, a logistic regression approach was conducted on each

of the 551 differential Codelink genes (Supplementary Data

S5). A total of 310 Codelink genes (.60%) were revealed

with individual transcript levels correlating directly at P ,

0.05 with the corresponding metachromatic granula-positive

cell numbers. In comparison, when the data were adjusted for

individual patients’ serum levels of LH, FSH and testosterone

as further possible factors which might affect testicular tran-

script levels, the numbers of genes correlating at the same

P-value were much lower, i.e. 9, 5 and 28 with individual

serum LH, FSH and testosterone levels, respectively.

Cross-platform sample classification

In order to evaluate the potential general significance of

the gene expression signature, the expression data of all 69

Figure 2: (A) Venn diagram showing overlap of genes between three datasets obtained from the Codelink training set, the GeneChip dataset
based on the same analytical approach as the former, and a third dataset obtained from supervised partitioning around medoids (PAM) clustering
of the GeneChip dataset
‘Probes’ refers to the differential signals from distinct hybridization probes, UniGene cluster IDs (‘UCIDs’) to the number of non-redundant
UNIGENE clusters. Numbers in intersections refer to common non-redundant UNIGENE clusters. (B) Hierarchical representation of Gene Ontol-
ogy and pathway terms over-represented in the datasets and intersections. Terms in blue, green and magenta are obtained from the Codelink, the
GeneChip and the GeneChip PAM analysis, respectively. Common terms of the intersection are in red with underlines. Listed are all terms with
P-values P , 0.05 after multiple testing correction. MAPK, mitogen-activated protein kinase; ECM, extracellular matrix
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biopsy samples were merged into a single data set. Gene anno-

tations were converted into UCIDs and multiple occurrences of

the same UCID removed by calculating its median value within

each experiment and platform. After probe matching, a total of

406 UCIDs was retained from the initially elaborated Codelink

list (Supplementary Data S6). To adjust for systematic biases,

DWD (Benito et al., 2004) was applied in a pair-wise fashion

by first combining the 28-sample Codelink training set with

additional 14 samples from the Codelink test set, and then com-

bining this common set with the 27-sample GeneChip data set

(Supplementary Fig. S6). Based on the 406 Codelink genes,

hierarchical cluster analysis was applied to the integrated

data set, resulting in a separation into three categories

(Fig. 5, upper panel), similar to the dendrogram structures pre-

viously seen in the independent data sets from both platforms

(see Supplementary Figs 2 and 3). This implied that the gene

expression signature was valid in different sample collectives

and patient cohorts which had been assayed with different

array platforms.

Referring to the proposals of Dupuy and Simon (2007), we

additionally applied three stringent statistical classification

methods to the dataset. For this approach, only two alternative

categories were distinguished, i.e. ‘pathological’, comprising

hypospermatogenesis, germ cell arrest and Sertoli-cell-only

appearance, and ‘normal’, comprising all samples with

quantitatively and qualitatively complete spermatogenesis.

Each of DLDA, KNN and SVM was subjected to

Leave-One-Out-Cross-validation and 2000 permutations of the

class labels in order to obtain a more realistic estimate of the mis-

classification rate (Fig. 5, lower panel). All Sertoli-cell-only

samples (n ¼ 17) and all samples with normal spermatogenesis

(n ¼ 21) were correctly classified. In addition, the majority of

samples with hypospermatogenesis and germ cell arrest were cor-

rectly classified as ‘pathological’ samples. In four cases, a mis-

classification pattern was coherent throughout the different

algorithms. In summary, an overall correct sample classification

rate of 94.2% was achieved with this more stringent set-up.

Discussion

Microarray data from 69 human testicular biopsies revealed a

gene expression signature of spermatogenic failure, which

resembled the graded induction of an inflammatory-like

response. Approximately 2–3% of testicular transcripts were

increased in the pathological samples, their levels gradually

growing with the severity of spermatogenic damage and reaching

maximum levels in samples with Sertoli-cell-only appearance.

As anticipated, germ cell-specific transcripts were not included.

These results underscore our previous observation that two fun-

damentally different patterns of coordinated gene expression

Table 1: Genes showing robust fold increase (Codelink/GeneChip) between normal spermatogenesis and three subtypes of spermatogenic failure (SCO, GCA
and HYS)

Gene
abbreviation

Accession
number

Name of protein Functional role (known or assumed);
association with disease

Ratio, SCO Ratio, GCA Ratio, HYS

CPA3 NM_001870 Carboxypeptidase A3 Mast cell-specific protease; induced in
asthma and allergic inflammation

8.64/10.19 2.62/2.08 2.65/1.98

CALB2 NM_001740 Calretinin ¼ Calbindin 2 Calcium-binding protein; cancer-associated,
induced upon mast-cell activation and in
azoospermia

7.40/6.03 2.75/3.14 1.70/2.70

LDLR NM_000527 Low density lipoprotein receptor Lipoprotein binding and endocytosis;
dysfunction causes familial
hyper-cholesterolemia; increased in
inflammation

7.13/3.94 3.54/3.19 3.03/1.90

CLEC2B NM_005127 C-type lectin domain family 2,
member B

Activating receptor; associated with
myolocyte/lymphocyte infiltration and
activation

5.93/6.57 2.12/3.33 2.13/2.46

TPSAB1 NM_003294 Tryptase alpha/beta Mast cell-specific protease; induced in
inflammation and mast cell-associated
fibrosis

5.52/8.71 2.83/2.12 2.02/1.76

SAMD9L NM_152703 Sterile alpha motif domain
containing 9-like

Extraosseous calcification; associated with
atherosclerosis and autoimmune disorders

5.24/10.33 1.76/2.46 1.99/1.63

DPT NM_001937 Dermatopontin Extracellular matrix protein; increased in
fibrotic diseases and infection

4.50/9.09 2.23/3.49 2.12/3.36

RBP1 NM_002899 Cellular retinol binding protein-1
(CRBP1)

Vitamin A homeostasis protein; increased in
liver fibrosis/cirrhosis and prostate cancer

4.42/6.21 2.70/2.24 1.97/3.12

CTSC NM_133504 Cathepsin C ¼ Dipeptidyl peptidase
I (DPPI)

Lysosomal protease; increased in sepsis,
arthritis, allergic inflammation

4.29/19.99 2.38/3.36 2.17/3.57

ADAMTS5 NM_007038 A disintegrin-like and
metalloprotease with
thrombospondin type 1 motif, 5

Metalloprotease; involved in degradation of
cartilage aggrecan (aggrecanase-2); induced
in osteoarthritis

4.09/4.91 2.14/2.34 2.32/1.91

TNFSF13B NM_006573 Tumour necrosis factor (ligand)
superfamily, member 13b (¼
BAFF)

B cell activating factor; over-expressed in
pathogenesis and progression of
autoimmune diseases

3.59/7.00 1.70/2.73 1.91/2.13

C1orf24 ¼
FAM129A

NM_052966 NIBAN protein with
pleckstrin-homology and armadillo
repeat domains

Unknown function; thyroid
cancer-associated

3.04/9.64 2.56/6.12 2.34/2.36

GCA, germ cell arrest at meiosis; HYS, hypospermatogenesis; SCO, Sertoli-cell-only appearance.
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are correlated with testicular pathologies (compare Feig et al.,

2007). The first and most obvious pattern corresponded to the

degree of successful spermatogenesis in each individual sample

and comprised predominantly germ cell-specific genes. The

second pattern which was analysed here corresponds to patho-

logical changes in testicular non-germ cells. A similar pattern

was recently described in human testicular biopsies by Ellis

et al. (2007) who also observed a pathology-associated increase

in transcript levels which corresponded to inflammatory activity.

The molecular changes observed in our study were accompanied

by extensive tissue remodelling and by an infiltration or acti-

vation of immune cells, including mast cells, in the testicular

interstitium. Lipid/steroid metabolism, immune response, posi-

tive regulation of NF-kB cascade, focal adhesion and MAPK sig-

nalling pathway were over-represented functional categories,

pathways known to be persistently activated in various other

disease states involving inflammation, allergy and autoimmunity

(for review, see McCulloch et al., 2006). In the testis, such path-

ways have been implicated in germ cell apoptosis (Pentikainen

et al., 2002; Rasoulpour and Boekelheide, 2007) and

ischemia-reperfusion (Lysiak et al., 2005). They may also be a

key event in autoimmune orchitis (compare Starace et al., 2005).

Stereological studies in men with impaired spermatogenesis

showed altered Leydig cell distribution (Tash et al., 2002;

Holm et al., 2003). The proportion of the testis parenchyma

occupied by Leydig cells was significantly larger, although

the absolute Leydig cell content seemed to be reduced. From

our study, increased transcript levels of various Leydig cell

markers, including the LHCGR, was suggested, possibly

reflecting a proportional increase in Leydig cells in the patho-

logical samples. On the other hand, spermatogenic damage

may be associated with impaired Leydig cell functions

(Andersson et al., 2004). An increase in Leydig cell markers

thus could likewise reflect dysfunction, possibly caused by a

disturbed paracrine communication between seminiferous

tubules and interstitium which may be ultimately triggered

by impaired germ cell functions (for review, see de Kretser,

2004).

Fibrosis of the interstitium and/or fibrotic thickening in the

lamina propria is frequently associated with impaired spermato-

genesis (de Kretser and Baker, 1996), suggesting that dysregu-

lation of extracellular matrix (ECM) homeostasis is a common

feature in human testicular pathology. We observed a robust

increase in the pathological samples of transcripts encoding der-

matopontin (DPT) and various types of collagen (COL3A1,

COL4A6, COL6A3 and COL27A1) which is in line with

these observations. In vitro studies suggested the basement

membrane collagens and mast cell-derived tryptase to be key

players in testicular fibrosis, stimulating fibroblast proliferation

and increased deposition of ECM material (Frungieri et al.,

2002). We found that transcripts encoding mast cell tryptase,

mast cell carboxypeptidase, aggrecanase-2 and cathepsin C

were significantly induced in all pathological samples. These

enzymes are involved in protease-mediated remodelling

during pathological and degenerative processes in various

tissues and organs (for review, see Laprise et al., 2004; Mar-

shall, 2004; Karsenty, 2005; Hallgren and Pejler, 2006).

Enhanced extracellular occurrence in the testis thus would be

likely to cause severe tissue damage and/or ECM remodelling.

Figure 4: Validation of microarray data for calretinin (¼calbindin 2,
CALB2) on transcript (A) and protein (B and C) level
(A) qRT–PCR was applied to the same 28 CodelinkTM samples as
used for microarray hybridization (with n ¼ 12, 6, 5 and 5 for the
four pathological subtypes, respectively). Box plots showing fold
inductions (with respect to FTS) for HYS (Bars 1 and 2), GCA
(Bars 3 and 4) and SCO ratios (Bars 5 and 6). Blue: microarray
results; white: qRT–PCR results. The c.v. was under 5% for all
samples, hence error bars were omitted in the figure. (B) Immunoper-
oxidase staining using anti-calretinin antibody (1:100) on
paraffin-embedded fragment of selected biopsy showing SCO appear-
ance. (C) Immunoperoxidase staining using anti-calretinin antibody
(1:100) on paraffin-embedded fragment of selected biopsy showing
normal spermatogenesis. White arrowheads point to calretinin immu-
nostaining in interstitium; black arrow points to calretinin staining
within seminiferous tubule

Figure 3: Validation of microarray data by qRT–PCR
A comparison of four selected genes is depicted. Line plots illustrated
the good correlation in transcriptional profiles of individual genes
obtained from microarray data (black line) and qRT–PCR (grey
line). qRT–PCR was applied to the same 28 Codelink samples used
for microarray hybridization (with n ¼ 12, 6, 5, 5 for the four patho-
logical subtypes, left to right, respectively). The coefficient of vari-
ation (c.v.) was under 5% for all samples, hence error bars were
omitted in the figure
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Immune cells, including mast cells, are normal constituents

of the human testis; however, additional cells are recruited

in various testicular pathologies (for review, see Fijak and

Meinhardt, 2006). In line with a possible infiltration and/or

activation of these cells in spermatogenic failure, we see an

increase of transcripts encoding the high-affinity IgE receptor

(FCER1G; Klemm and Ruland, 2006), components of the

inflammasome (PYCARD/ASC and CASP1; for review, see

Mariathasan and Monack, 2007), the fractalkine receptor

(CX3CR1) which promotes mast cell homing and asthma

(Papadopoulos et al., 2000; Laprise et al., 2004), B-cell activat-

ing factor (TNFSF13B/ BAFF/BLyS; Claudio et al., 2002),

interleukin 32 (IL-32; Conti et al., 2007) as well as

NF-kB-activating IL-1 receptor-associated kinase (IRAK1)

(Song et al., 2006). Mast cells have been implicated in the

pathophysiology of many diverse diseases, operating through

the synthesis of pro-inflammatory mediators, the pattern of

which varies depending on tissue and stimulus (for review,

see Bischoff, 2007). They also contribute to acute testicular

inflammation (Iosub et al., 2006). The previous notion that

they may also play a role in human testicular physiology and

pathology is supported by our results.

Our analysis revealed a common gene expression signature of

spermatogenic failure characterized by the graded induction of by

and large the same genes in different pathological subgroups,

whereby the individual transcript levels closely correlated with

degree of spermatogenic damage. Based on these results one

might speculate that the different subtypes of human spermato-

genic failure represented graded manifestations of a common dis-

order, which progressively alters the functions (and numbers) of

somatic testicular cells and ultimately causes germ cell loss. Con-

versely, spermatogenic failure and germ cell loss will undoubt-

edly affect somatic testicular functions. As yet neither the

molecular mechanisms are fully understood through which the

somatic cells regulate spermatogenesis, nor are the effects of

germ cells (or conversely the loss of germ cells) on somatic

gene expression. Considering the heterogeneous aetiologies and

highly individual molecular causes which may underlie sperma-

togenic failure in the human, the molecular changes described

here may represent common symptoms, but may as well reflect

Figure 5: Hierarchical clustering of 406 genes exhibiting pathological up-regulation in the Codelink training set that were extracted from the
common set of 8263 genes in both platforms
All 69 samples were hierarchically clustered (Manhattan metric, average distance) using the colour coding as follows. The heat map was built
using all genes and heat colours from dark red (high expression) to bright yellow (low expression). Red and black dots on the dendrogram
nodes are permutation-based cluster stability P-values as calculated from the ‘pvclust’ package (red: P-value �0.05, black: P-value .0.05).
Samples are colour coded in black (FTS, F), green (HYS, H), blue (GCA, G) and red (SCO, S). Sample labels show the origin of the dataset
(FTS/HYS/GCA/SCO_X: codelink training; fts/hys/gca/sco.X: codelink test; F/H/G/S_X: geneChip). The bar coding below the heat map
was obtained with the 406 genes from a more stringent classification approach using DLDA, 1-NN and SVM, based on 2000 random permutations
of the leave-one-out cross-validation misclassification rate. Black boxes show misclassified samples (overall classification rate was 94.2%).
DLDA, diagonal linear discriminant analysis; SVM, Support Vector Machines; 1-NN, one-nearest neighbour classification
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an inherent dysfunction in the somatic testicular cell types which

may causally contribute to the pathology.

In line with this, our microarray results may have clinical

implications. They may be useful to develop new diagnostic

methods and criteria, provided that increased testicular

mRNA levels are accompanied by elevated seminal fluid

and/or serum levels of the encoded proteins. As somatic testi-

cular cells are amenable to pharmacological intervention, our

results would support anti-inflammatory therapy and/or mast

cell inhibition as promising approaches in spermatogenic

failure, at least in the less severe cases. Specifically the sub-

group of hypospermatogenic men may benefit from such treat-

ments. The results presented by Ellis et al. (2007) suggest that

they may also be applicable to cases of ‘mixed atrophy’. Thera-

peutically controlling inflammation and/or mast cell functions

can significantly improve disease outcomes (McCulloch et al.,

2006; Bischoff, 2007), although many patients remained

refractory to treatment in the past. Clinical trials in infertility

patients have likewise cast doubt on the efficacy of such thera-

pies; however, they may still be effective in a more carefully

selected subgroup of patients (‘responders’). As probably no

single target will be sufficiently effective, the future challenge

for therapy design will be to reconcile counteracting regulatory

processes which may modulate testicular functions, the NF-kB

cascade and other signalling platforms which are activated in

defective spermatogenesis representing promising targets.

Supplementary Data

Supplementary data is available at http://humrep.oxfordjour-

nals online.
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